The geodesic flow of a nonpositively curved graph manifold

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The geodesic flow of a nonpositively curved graph manifold

We consider discrete cocompact isometric actions G ρ y X where X is a locally compact Hadamard space1, and G belongs to a class of groups (“admissible groups”) which includes fundamental groups of 3-dimensional graph manifolds. We identify invariants (“geometric data”) of the action ρ which determine, and are determined by, the equivariant homeomorphism type of the action G ∂∞ρ y ∂∞X of G on th...

متن کامل

Virtual Cubulation of Nonpositively Curved Graph Manifolds

In this paper, we show that an aspherical compact graph manifold is nonpositively curved if and only if its fundamental group virtually embeds into a right-angled Artin group. As a consequence, nonpositively curved graph manifolds have linear fundamental groups.

متن کامل

Conjugacy rigidity for nonpositively curved graph manifolds

We show that the metric of nonpositively curved graph manifolds is determined by its geodesic flow. More precisely we show that if the geodesic flows of two nonpositively curved graph manifolds are C0 conjugate then the spaces

متن کامل

Teichmüller harmonic map flow into nonpositively curved targets

The Teichmüller harmonic map flow deforms both a map from an oriented closed surface M into an arbitrary closed Riemannian manifold, and a constant curvature metric on M , so as to reduce the energy of the map as quickly as possible [16]. The flow then tries to converge to a branched minimal immersion when it can [16, 18]. The only thing that can stop the flow is a finite-time degeneration of t...

متن کامل

Some Remarks on the Geodesic Completeness of Compact Nonpositively Curved Spaces

Let X be a geodesic space. We say that X is geodesically complete if every geodesic segment β : [0, a] → X from β(0) to β(a) can be extended to a geodesic ray α : [0,∞) → X, (i.e. β(t) = α(t), for 0 ≤ t ≤ a). If X is a compact npc space (“npc” means: “non-positively curved”) then it is almost geodesically complete, see [10]. (X, with metric d, is almost geodesically complete if its universal co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometric And Functional Analysis

سال: 2002

ISSN: 1016-443X,1420-8970

DOI: 10.1007/s00039-002-8255-7